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Abstract

These notes were prepared for a talk given by the author at the graduate student geometry
seminar at the University of Texas at Austin. The aim of the talk is to demonstrate how
to produce convolution algebras associated to fiber products of certain maps and how this
geometric construction gives rise to classification results in representation theory. We present
three contexts for this philosophy: functions on finite sets, the Springer correspondence for Weyl
groups, and Springer theory for sln.

1 Introduction

A standard problem in representation theory is to classify the simple modules of a given algebra. In
this talk, we explore examples in which geometric constructions make such classifications possible.
The basic pattern is as follows:

• Let µ : X → Y be a map of varieties or finite sets.

• Use the fiber product Z = X ×Y X to produce a convolution algebra A.

• The algebra A acts on the fibers of µ (in the appropriate sense).

• Analysis of these actions leads to a classification of simple A-modules.

Some of the relevant techniques can be witnessed in the elementary setting of functions on fi-
nite sets. A classical instance of the above pattern is the Springer correspondence for irreducible
representations of the Weyl group of a semisimple complex Lie algebra. To state the result, we
introduce the Springer resolution and briefly discuss Borel-Moore homology. The next example is a
classification for finite-dimensional irreducible representations of sln. The final portion of the talk
will consist of remarks on affine Hecke algebras and connections to the Langlands program.

2 Functions on finite sets

In this section we present a convolution map for functions on finite sets. This construction will
lead to the notion of a convolution algebra and also to a classification theorem for its modules.
The manipulations and arguments are elementary; nonetheless, when stated correctly, they hold
verbatim in more sophisticated settings. The reader is invited to treat any unfilled details in this
section as exercises.

1



2.1 Composition and convolution

For a finite set X, let C[X] denote the vector space of complex-valued functions on X. Let X1, X2,
and X3 be finite sets and consider the diagram

X1 ×X2 ×X3

π12

vvnnn
nnn

nnn
nnn

π13
��

π23

((PP
PPP

PPP
PPP

P

X1 ×X2 X1 ×X3 X2 ×X3

For subsets Z12 ⊂ X1 ×X2 and Z23 ⊂ X2 ×X3, we define their set-theoretic ‘composition’ as

Z12 ◦ Z23 = π13(π
−1
12 (Z12) ∩ π−1

23 (Z23)) ⊂ X1 ×X3.

In words, first take the inverse image of each of the sets in X1×X2×X3, then intersect those inverse
images, and finally take the image of the intersection under the projection to X1 ×X3. This is our
first appearance of the fundamental pattern of pulling back, intersecting, and pushing forward.

Exercise. If Z12 = graph(X1
α→ X2) and Z23 = graph(X2

β→ X3) are each the graph of a function,
show that Z12 ◦ Z23 is the graph of the composition β ◦ α.

The set-theoretic composition leads to a linear ‘convolution’ map on the level of functions, defined
by pulling back, multiplying pointwise, and pushing forward:

C[Z12]× C[Z23]→ C[Z12 ◦ Z23]

f, g 7→ π13∗(π
∗
12f · π∗23g)

Here the pullback π∗12f is defined on a ∈ X1×X2×X3 as the composition f ◦π12(a) if π12(a) ∈ Z12

and zero otherwise. The same remark holds for π∗23g. Pushforward is defined using summation over
fibers, and convolution admits the following explicit formula

(f ∗ g)(x1, x3) =
∑
x2∈S

f(x1, x2) · g(x2, x3)

where S = {x2 ∈ X2 | (x1, x2) ∈ Z12, (x2, x3) ∈ Z23}.

This construction is associative in the following sense. Let X4 be a fourth finite set and let
Z34 ⊂ X3 ×X4. One first checks that set-theoretic composition is associative: (Z12 ◦ Z23) ◦ Z34 =
Z12 ◦ (Z23 ◦ Z34) as subsets of X1 ×X4. Then one checks that if fij ∈ C[Zij ], then

(f12 ∗ f23) ∗ f34 = f12 ∗ (f23 ∗ f34)

as elements of C[Z12 ◦Z23 ◦Z34]. This last verification can be performed using explicit formulas, or
by manipulating pullbacks and pushforwards. For the second approach, some useful facts are (1)
pullback commutes with pointwise multiplication and (2) the projection formula α∗(α∗f ·g) = f ·α∗g
for any function α : X → Y and any f ∈ C[Y ], g ∈ C[X].
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2.2 Convolution algebras

Important instances of convolution occur in the context of a map µ : X → Y of finite sets. The
fiber product of X with itself over Y is defined as

Z = X ×Y X = {(x, x′) ∈ X ×X | µ(x) = µ(x′)}.

First, set X1 = X2 = X3 = X and Z12 = Z23 = Z. Then Z ◦ Z = Z and we get an algebra
structure on C[Z]:

∗ : C[Z]× C[Z]→ C[Z].

the unit is the characteristic function of the diagonal X∆ in Z = X ×Y X. An algebra that arises
in this way is often called a convolution algebra. In the special case that Y is a point, we have
that Z = X ×X and one can verify that the resulting convolution algebra is a matrix algebra

(C[X ×X], ∗) ' EndC(C[X]).

Next, consider the diagram

X ×X × pt
π12

wwppp
ppp

ppp
pp

π13
��

π23

%%KK
KKK

KKK
KKK

X ×X X X

Let Z12 = Z = X ×Y X and take Z23 = µ−1(y) = Xy to be the fiber over a point y ∈ Y . Then
Z ◦Xy = Xy and the convolution map induces a C[Z]-module structure on C[Xy]:

∗ : C[Z]× C[Xy]→ C[Xy].

In fact, we have:

Proposition 1. The collection {C[Xy] | y ∈ Y, Xy 6= ∅} forms a complete set of isomorphism
classes of irreducible modules for the convolution algebra C[Z].

Proof. Observe that Z =
∐
y∈Y Xy ×Xy and there are isomorphisms of algebras

C[Z] '
⊕
y∈Y

C[Xy ×Xy] '
⊕
y∈Y

EndC(C[Xy]).

Since our algebra decomposes into a direct sum of matrix algebras, the proposition follows by
standard results (e.g. the Wedderburn theorem).

3 The Springer Correspondence for Weyl Groups

3.1 The Nilpotent Cone and the Springer Resolution

Let g be a finite dimensional semisimple Lie algebra over C. Let B be the set of Borel subalgebras
of g, known as the flag variety. If G is a Lie group with Lie algebra g and B is a Borel subgroup
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of G, then we can identify B with the homogeneous space G/B. This identification can be used to
show that B is a smooth projective variety. Recall that associated to g is a finite Coxeter group W ,
known as the Weyl group of g.

Let N be the set of elements x ∈ g such that ad(x) : g → g is a nilpotent linear transformation.
One observes that the subvariety N of g is stable under the adjoint action of G and also under the
action of C∗ by dilations. We call N the nilpotent cone of g.

Note that N is always singular at the origin. One can define a resolution of singularities of N as
follows. Let

Ñ = {(x, b) ∈ N × B | x ∈ b}.

The group G acts on Ñ by the adjoint representation in both coordinates. The natural projection
Ñ → B identifies Ñ with the cotangent bundle T ∗B of the flag variety. Hence, Ñ is a smooth
variety. There is also a natural map

µ : Ñ → N

defined by µ(x, b) = x. One can show that this map is proper, surjective, and G-equivariant, and
moreover, that #µ−1(x) = 1 if x is a regular element of N . Since the set of regular nilpotent
elements forms a Zariski-open and dense subset of N , we see that µ is generically one to one.
Finally, since Ñ is smooth; we conclude that µ is a resolution of singularities of N .

Definition. The map µ : Ñ → N is called the Springer resolution. The fiber

µ−1(x) = {b ∈ B | x ∈ b}

over an element x ∈ N is called a Springer fiber and is denoted by Bx. The fiber product

Z = Ñ ×N Ñ

is called the Steinberg variety.

3.2 Borel-Moore homology

If we were dealing with finite sets, then we have seen that the space of functions on Z carries a
natural convolution algebra structure. However, the construction breaks down in the present setting
of varieties. One problem is that defining the pushforward of a function requires a choice of mea-
sure. To avoid measures, one can think about differential forms, where the pointwise multiplication
of functions is replaced by the wedge product of differential forms. However, certain properness
assumptions are necessary, and these lead to degeneracies in the cases we are interested in. A way
to avoid the properness assumptions is to use the notion of ‘currents’, which are (roughly speaking)
distribution-like differential forms. However, the wedge product is not well-defined for currents.

Borel-Moore homology provides a solution to these difficulties. For the purposes of this talk, we
will not define Borel-Moore homology precisely and kindly ask the audience and readers to take
it as a black box. Borel-Moore homology is defined for any variety and has many nice properties,
for example: proper pushforward, smooth pullback, intersection pairing, a Künneth formula, and
fundamental classes. One can think of Borel-Moore homology as the dual notion to cohomology
with compact support.
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For a variety X, let H∗(X) denote its Borel-Moore homology with complex coefficients. We
will often be interested only in the subspace spanned by the fundamental classes of the irreducible
components of X, rather than all of H∗(X). We denote this subspace by H(X). If all irreducible
components have the same dimension, then H(X) will coincide with the top degree homology
Htop(X) of X.

3.3 The Springer correspondence

The relevance of Borel-Moore homology for this talk is that it has enough features to define a
convolution algebra structure on H∗(Z), where Z is the Steinberg variety. The procedure for
defining this convolution follows the same as pattern as in the setting of finite sets. We give the
fundamental diagram for the present setting, as well as the steps in defining convolution:

Ñ × Ñ × Ñ
π12

vvnnn
nnn

nnn
nnn

π13
��

π23

((PP
PPP

PPP
PPP

P

Z ⊂ Ñ × Ñ Ñ × Ñ Ñ × Ñ ⊃ Z

• Pullback c, c′ ∈ H∗(Z) to classes π∗12c ∈ H∗(π
−1
12 (Z)) and π∗23c

′ ∈ H∗(π−1
23 (Z)).

• Use an intersection pairing, which is the analogue to pointwise multiplication, in the ambient
space Ñ × Ñ × Ñ to produce a class π∗12c ∩ π∗23c

′ ∈ H∗(π−1
12 (Z) ∩ π−1

23 (Z)).

• Finally, pushforward via π13 to obtain a class in H∗(Z). We denote this class by c ∗ c′.

The unit of the algebra is the fundamental class of the diagonal Ñ∆ in Z = Ñ ×N Ñ . Dimension
considerations (that we omit) imply that H(Z) is a subalgebra.

Theorem 2. The algebra H(Z) is isomorphic to the group algebra of the Weyl group:

H(Z) ' C[W ].

The proof (see section 3.4 of [1]) uses the facts that Z is a subvariety of Ñ × Ñ ' T ∗(B×B) and
that the orbits of the diagonal action of G on B × B are in bijection with the Weyl group, by the
Bruhat decomposition:

G\(B × B) = G\(G/B ×G/B) = B\G/B 'W.

As may be expected, there is an action of H∗(Z) on the homology of a Springer fibers H∗(Bx); this
action descends to an action of H(Z) on H(Bx). By the main result of the finite sets section, one
might suspect that consideration of the modules H(Bx) leads to a classification of simple modules
for H(Z). This is true once we take into account the action of G on N .

Let x ∈ N be a nilpotent element and let G(x) be the stabilizer of x in G. Since µ is G-equivariant,
there is an action of G(x) on the Springer fiber Bx, and hence on its homology H(Bx). The identity
component G(x)◦ of G(x) acts trivially on H(Bx), so we obtain an action of the component group
A(x) = G(x)/G(x)◦ on H(Bx).
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Proposition 3. The actions of A(x) and H(Z) on H(Bx) commute.

Since A(x) is a finite group, we can decompose H(Bx) into a direct sum of isotypic subspaces for
the (isomorphism classes of) irreducible representations of A(x):

H(Bx) =
⊕

φ∈IrrepA(x)

H(Bx)φ.

Here IrrepA(x) denotes the finite set of isomorphism classes of irreducible representations of A(x).
Some of these isotypic subspaces may be zero; let A(x)∨ = {φ ∈ IrrepA(x) | H(Bx)φ 6= 0}. The
preceding proposition implies that each isotypic subspace H(Bx)φ is preserved by the action of
H(Z).

Let x, y ∈ N . If x and y are G-conjugate, i.e. y = Ad(g) · x for some g ∈ G, then the action of g
gives an identification of:

• the component groups A(x) and A(y).

• the sets IrrepA(x) and IrrepA(y).

• the homology spaces H(Bx) and H(By).

If φ ∈ IrrepA(x) corresponds to ψ ∈ IrrepA(y) under the second identification, then we say that the
pairs (x, φ) and (y, ψ) are G-conjugate. In this case, the isotypic subspaces H(Bx)φ and H(By)ψ
are in correspondence under the third identification, and are isomorphic as H(Z)-modules. The
following theorem is the main result of this section:

Theorem 4. The collection {H(Bx)φ}, where (x, φ) runs over G-conjugacy classes of pairs x ∈ N
and φ ∈ A(x)∨, is a complete set of irreducible representations of W .

Hence we obtain a geometric classification of the irreducible representations of any Weyl group.
We invite the reader to compare this theorem with Proposition 1.

We make some remarks on the proof of this theorem. One ingredient is an ordering of the orbits of
the diagonal action of G on B×B; this ordering gives rise to a filtration on H(Z) and eventually one
shows that H(Z) is a direct sum of matrix algebras. Another approach is to develop sheaf-theoretic
machinery and use a certain Fourier transform, as well as the powerful Beilinson-Bernstein-Deligne
decomposition theorem.

Remark Consider the category LSG(Ox) of G-equivariant local systems (i.e. locally constant
sheaves of finite-dimensional complex vector spaces) on the orbit Ox of x in N . This category
has a fiber functor to the category of finite-dimensional complex vector spaces given by taking the
stalk at x. Therefore, it is a neutral Tannakian category. Its Tannakian fundamental group is A(x).

Example. Let g = sln. In this case, the Weyl group is the symmetric group W = Sn. It turns
out that all component groups A(x) act trivially, so the theorem gives the first of this series of
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bijections:

Irrep(Sn)←→

{
G-orbits
on N

}
←→

{
conjugacy classes

of nilpotent matrices

}
←→

{
partitions

of n

}
←→

{
conjugacy
classes in Sn

}
.

The third bijection follows from the theory of Jordan normal forms.

4 Springer theory for sln

The aim of this section is to state a geometric classification of finite dimensional irreducible repre-
sentations of the Lie algebra sln using the pattern of describing modules for convolution algebras
arising from fiber products.

The first step is to fix a positive integer d bearing no relation to n. Let F denote the set of n-step
partial flags of Cd, that is, F consists of all sequences of subspaces

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = Cd

where the inclusions are not necessarily proper. Observe that the connected components of F are
indexed by partitions of d into n integers. As with the flag variety B, one can show that F has the
natural structure of a smooth projective variety.

Let N denote the set of linear maps x ∈ EndC(Cd) such that xn = 0. Let

M = {(x, F•) ∈ N ×F | x(Fi) ⊂ Fi−1}.

One can identify M with the cotangent bundle T ∗F ; hence M is a smooth variety. The natural
map

µ :M → N,

that sends (x, F•) to x, is proper and commutes with the action of GLd(C). Let Fx denote the
fiber µ−1(x) of an element x in N . The analogue of the Steinberg variety is the fiber product
Z = M ×N M. When we wish to emphasize the dependency on d, we write Zd instead of just Z.
As in previous section, the Borel-Moore homology H(Z) of Z has a convolution algebra structure
and H(Z) is a subalgebra. Once again, we have an action of H(Z) on H(Fx) for any x ∈ N . In
this case, the component group acts trivially and two such representations H(Fx) and H(Fy) are
isomorphic if and only if x and y are conjugate under the action of GLd(C).

Theorem 5. The collection {H(Fx)}, where x runs through GLd(C)-conjugacy classes of N , is a
complete collection of irreducible H(Z)-modules.

The proof of this theorem is an adaptation of the proof of Theorem 4. The following result relates
the Lie algebra sln to the convolution algebras H(Z) = H(Zd) for various d:

Theorem 6. For any positive integer d, there is a surjective algebra homomorphism U(g)→ H(Zd).
Moreover, the action of sln on any irreducible finite dimensional representation factors through
H(Zd) for some d.
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The homomorphism can be defined explicitly by specifying the images of the Chevalley generators
{ei, fi, hi} of sln as linear combinations of fundamental classes in H(Zd). Some combinatorics of
the n-step flag varieties is involved in making sure the correct relations hold. One can also appeal
to sheaf-theoretic techniques. There is a way to interpret this result in the language of Nakajima’s
quiver varieties for a type A quiver; this approach can be generalized to arbitrary Kac-Moody
algebras [2].

5 Epilogue: affine Hecke algebras and the Langlands program

Due to the time constraints of this talk and the amount of necessary background, we refrain from
delving into the definition of the affine Hecke algebra. Instead, we note that the affine Hecke algebra
of a complex semisimple group G is an algebra over Z[q, q−1] that encodes information about the
Weyl group of G and the weight lattice of G. Let H denote the affine Hecke algebra; in cases where
we emphasize the dependency on the group G, we write H(G) instead.

It turns out that irreducible representations of the affine Hecke algebra can also be classified using
geometric data, and the procedure follows a pattern similar to the one we have seen in the previous
sections. This time, the convolution algebra that arises is the fiber product of certain fixed point
varieties in the Springer resolution.

Let LG denote the Langlands dual of G. When we specialize q to a prime p, the same data
that classifies irreducible representations of H(LG)|q=p also classifies so-called tamely unramified
homomorphisms of the absolute Galois group of Qp into the group LG. On the other hand, work of
Bernstein and Iwahori-Matsumoto shows that H(LG)|q=p is isomorphic to the convolution algebra
C[I\G(Qp)/I] of complex-valued functions on a double coset space of G(Qp) corresponding to the
Iwahori subgroup I. These results establish the Langlands-Deligne conjecture, which is considered
a starting point in the general Langlands program.
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